
JS漏洞的挖掘与利用

演讲嘉宾：冯柱天 奇点实验室高级安全研究员

 何豪杰 奇点实验室安全研究员

目录
1

2

3

4

Background

A new guide for JSFuzz

Takeaways

A new bug and exploit

Background

Review of JS Fuzzing technology

What is JS Fuzzing?

Step1 Generate JS source code

Step2 Feed the generated code to the JS engine

Step3 Check states of engine

Step4 Update states of generator

Step5 Loop

Generator

Executor

Sample Feedback

Another view of Fuzzing

Generator
Sample

Feedback

Input Space: 𝐼 Target Engine: 𝐸 Monitor: 𝑀

Fuzzing Problem:

Find 𝒊 ∈ 𝐼, 𝒊 can trigger an unexpected behavior of 𝐸.

And this unexpected behavior should be observed by 𝑀.

Runner Monitor

Executor

Another view of Fuzzing

Given target engine 𝐸 and monitor 𝑀, fuzzing is a search problem.

Fuzzing Problem (Given 𝐸 and 𝑀):

Search for 𝑖 ∈ 𝐼, 𝑖 can trigger at least one unexpected behavior

of 𝐸 which can be observed by 𝑀.

Generator
Sample

Feedback Runner Monitor

Executor

A third view of Fuzzing

We are not searching for some certain inputs.

What we are searching for is the bugs,

i.e. the unexpected states.

Bug

How to catch the “light”

• Extrapolating from “the laws of physics”
• Mutation-based fuzzing, extrapolated from “Universal Gravitation“

Bugs are locally aggregated, so it may be easier to find one from another.
•

How to catch the “light”

• Extrapolating from “the laws of physics”
• Mutation-based fuzzing, extrapolated from “Universal Gravitation“

Bugs are locally aggregated, so it may be easier to find one from another.
•

• Knowledge about “the universe”
• Expert Knowledge

Some particular modules of a specified target is buggy.
• ……

How to catch the “light”

• Extrapolating from “the laws of physics”
• Mutation-based fuzzing, extrapolated from “Universal Gravitation“

Bugs are locally aggregated, so it may be easier to find one from another.
•

• Knowledge about “the universe”
• Expert Knowledge

Some particular modules of a specified target is buggy.
• ……

• Simply searching more space
• Coverage Guided Grey-box fuzzing

Remember the paths I‘ve traveled, and I wanna go somewhere new.
• ……

How to catch the “light”

• Extrapolating from “the laws of physics”
• Mutation-based fuzzing, extrapolated from “Universal Gravitation“

Bugs are locally aggregated, so it may be easier to find one from another.
•

• Knowledge about “the universe”
• Expert Knowledge

Some particular modules of a specified target is buggy.
• ……

• Simply searching more space
• Coverage Guided Grey-box fuzzing

Remember the paths I‘ve traveled, and I wanna go somewhere new.
• ……

Very effective in
practice

Current JS Fuzzing Guides

Coverage Guide

E.g. edge coverage used in Fuzzilli
• Every control flow edge is instrumented to see if it is

covered during every single run.
• Search in a projection space of the runtime state space.

Current JS Fuzzing Guides

Coverage Guide

E.g. edge coverage used in Fuzzilli
• Every control flow edge is instrumented to see if it is

covered during every single run.
• Search in a projection space of the runtime state space.

Structure Guide

E.g. the complexity measure used in IFuzzer
• Aim at measuring and controlling the number of paths

through a program.
• Search in a subspace of the input space.

Limitation of Coverage Guide

• Triggering a bug often needs not
only reaching a certain code point,
but also a specified memory/register
state.

Limitation of Coverage Guide

Example:

• Interpretative execution

• Triggering a bug often needs not
only reaching a certain code point,
but also a specified memory/register
state.

Limitation of Coverage Guide

• Triggering a bug often needs not
only reaching a certain code point,
but also a specified memory/register
state.

• May not help the fuzzer to explore
the coverage thoroughly. And will
quickly reach the bottleneck in
practice.

• The instrumentation slow down the
execution. (5x+ in our experiments.)

Limitation of Coverage Guide

• Triggering a bug often needs not
only reaching a certain code point,
but also a specified memory/register
state.

• May not help the fuzzer to explore
the coverage thoroughly. And will
quickly reach the bottleneck in
practice.

• The instrumentation slow down the
execution. (5x+ in our experiments.)

Limitation of Current Structure Guide

• Capture the control flow information only.
The following two pieces of code are considered equally
interesting.

Limitation of Current Structure Guide

• Capture the control flow information only.
The following two pieces of code are considered equally
interesting.

• Low interpretability:
It's hard to define what kind of structure is good.
Though triggering a new bug requires an input sample of
appropriate complexity, it is not trivial to characterizing
complex structures for the interpreter/compiler.

Review of Current Guides

• Coverage Guide
• Aim to find more different behaviors with respect to the

control flow, but ignore the memory states.

• Structure Guide
• Describe the vulnerability characteristics of samples.

Guide fuzzers to generate samples with certain features.
• Such methods tend to be poorly interpretable.

A new guide for JSFuzz

New Aspect

• PoC samples tend to have some obvious vulnerability semantics.

• Vulnerability semantics itself is not a definable semantics.

We borrow ideas from the code coverage approach and aim to

explore more diverse sample semantics.

• Meanwhile, semantics of samples finally define both the control flow

states and memory states of the JS engine.

Fuzzilli

A coverage-guided fuzzer for dynamic language interpreters based
on a custom intermediate language ("FuzzIL") which can be mutated
and translated to JavaScript.

FuzzIL
An intermediate language in static single assignment form that is
easier to be analyzed and manipulated.

coverage-guide
Once a sample enable the JS engine to run through a new edge, it is
regarded as interesting and saved into corpus.

Fuzzilli

• Step1 Pick a random sample from the corpus

Fuzzilli

• Step1 Pick a random sample from the corpus
• Step2 Analyze context info / type info

Rule1: return type of LoadInt is integer
Rule2: return type of LoadString is jsString
Rule3: return type of CallMethod depends
jsString .repeat is of type [integer]=>jsString
Rule4: return type of CreateArray is jsArray

Fuzzilli

• Step1 Pick a random sample from the corpus

• Step2 Analyze context info such as type info

• Step3 Pick a mutator and do it

Fuzzilli

• Step1 Pick a random sample from the corpus

• Step2 Analyze context info such as type info

• Step3 Pick a mutator and do it

• Step4 Lift to JavaScript and run

Fuzzilli

• Step1 Pick a random program from the corpus

• Step2 Analyze context info such as type info

• Step3 Pick a mutator and do it

• Step4 Lift to JavaScript and run

• Step5 Postprocess (check crash, check cov ...)

Data Flow in FuzzIL

V0V1 V2

V3

V4

Extracting local structure

V0V1 V2

V3

V4

V0V1 V2

V3

V4

Extracting local structure

II S

R

A

V0V1 V2

V3

V4

0

0

1

1

Tuple Representation

II S

R

A

We can represent the feature of a path as a tuple.
For example:

(S, 0, R, 0, A)

(I, 1, R, 0, A)

(S, 1, A)

0

0

Tuple Representation

II S

R

A

We can represent the feature of a path as a tuple.
For example:

(S, 0, R, 0, A)

(I, 1, R, 0, A)

(S, 1, A)

1

0

Tuple Representation

II S

R

A

We can represent the feature of a path as a tuple.
For example:

(S, 0, R, 0, A)

(I, 1, R, 0, A)

(S, 1, A)1

Multi-level Features

1-Tuple
(I), (S), (R), (A)

3-Tuple (2 nodes and 1 edge)
(I, 1, R), (S, 0, R), (R, 0, A)

5-Tuple (3 nodes and 2 edges)
(I, 1, R, 0, A), (S, 0, R, 0, A)

II S

R

A

Use Bitmap

• Map tuples trivially into indexes and use bitmaps (just like the

coverage guide) to see how many different types of paths we have

covered.

• Suppose we have 𝑁 different types of opcodes and 𝑀 different

types of edges, then

𝑚𝑎𝑝 1, 3, 2 → 1 ∗ 𝑀 ∗ 𝑁 + 3 ∗ 𝑁 + 2

𝑚𝑎𝑝 1, 2, 3, 0, 5 → 1 ∗ 𝑀 ∗ 𝑁 + 1 ∗ 𝑁 + 3 ∗ 𝑀 ∗ 𝑁 + 0 ∗ 𝑁 + 5

Evaluation 01

Sematics-Cov Code-Cov

Total Samples 121 379 405 13 341 152

Tested Code Lines 13 711 920 931 973 857 915

Unique Crashes 4 3

Crashes samples 2403 1697

On the modified version of fuzzilli,
we run both guides for 24 hours with 52 thread jobs.

Evaluation 01

On the modified version of fuzzilli,
we run both guides for 24 hours with 52 thread jobs.

Evaluation 02

We then run design another experiment to see how they diff.

Instance ID Judge samples by Also evaluate on

A Coverage Guide Structure Coverage
Guide

B Structure Coverage
Guide Coverage Guide

C Union of Both x

Evaluation 02

Fig. Coverages -- Lines of Code Tested

Review

• The semantic coverage method starts from describing the
high-level semantic information of samples, and guides the
fuzzing system to discover more semantic structures.

• Assumption：The key semantic structures that trigger
vulnerabilities are generally not complex.

• A lift of Coverage Guide
• Edge is now the local structure of data flow graph
• Cover more opcodes and the combinations of opcodes
• Express higher level semantic information

Spread

• May be able to generalize to other structured inputs

• At least not difficult to design similar algorithms on AST

• Develop different feature extraction process

• No only on the data flow graph, but also the control flow graph

• Refine the features: extract data types

A new bug and exploit

● Issue 1254189 (CVE-2021-38007)

● Issue 1254189 (CVE-2021-38007)

Graph before ComputeSchedule phase

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

IA32 Instruction Selector

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Debug)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Debug)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Debug)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Debug)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Debug)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Release)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Release)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Release)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Release)

● Issue 1254189 (CVE-2021-38007)

AssembleCodePhase (Release)

● HOW TO EXPLOIT

Graph after SimplifiedLowering phase

● HOW TO EXPLOIT

Graph after SimplifiedLowering phase

● HOW TO EXPLOIT

● HOW TO EXPLOIT

● HOW TO EXPLOIT

Breaking the Typer

● HOW TO EXPLOIT

Breaking the Typer

● HOW TO EXPLOIT

Breaking the Typer

● HOW TO EXPLOIT

● HOW TO EXPLOIT

Ideas #1

SimplifiedLowering phase

● HOW TO EXPLOIT

SimplifiedLowering phase

● HOW TO EXPLOIT

Representation change

● HOW TO EXPLOIT

Representation change

● HOW TO EXPLOIT

Ideas #1

● HOW TO EXPLOIT

Ideas #1

● HOW TO EXPLOIT

Ideas #1

● HOW TO EXPLOIT

Ideas #1

● HOW TO EXPLOIT

● HOW TO EXPLOIT

Ideas #2

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Typer-friendly tagged phi

● HOW TO EXPLOIT

Ideas #3

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

Typer-opaque constants credit to Manfred Paul

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

Ideas #3

● HOW TO EXPLOIT

Ideas #3

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

Ideas #4

● HOW TO EXPLOIT

Ephemeral phi

● HOW TO EXPLOIT

Ephemeral phi

● HOW TO EXPLOIT

Ephemeral phi

● HOW TO EXPLOIT

Ephemeral phi

● HOW TO EXPLOIT

Ephemeral phi

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

CommonOperatorReducer

● HOW TO EXPLOIT

DeadCodeElimination

● HOW TO EXPLOIT

DeadCodeElimination

● HOW TO EXPLOIT

Ideas #5

● HOW TO EXPLOIT

Ideas #5

● HOW TO EXPLOIT

Ideas #5

● HOW TO EXPLOIT

EffectControlLinearizer

● HOW TO EXPLOIT

EffectControlLinearizer

● HOW TO EXPLOIT

Ideas #5

● HOW TO EXPLOIT

Ideas #5

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

MachineOperatorReducer

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

POC

● HOW TO EXPLOIT

Graph before SimplifiedLowering phase

● HOW TO EXPLOIT

Graph before SimplifiedLowering phase

● HOW TO EXPLOIT

Graph after SimplifiedLowering phase

● HOW TO EXPLOIT

Graph after SimplifiedLowering phase

● HOW TO EXPLOIT

Graph after EarlyOptimization phase

● HOW TO EXPLOIT

--trace-turbo-reduction

● HOW TO EXPLOIT

--trace-turbo-reduction

● HOW TO EXPLOIT

--trace-turbo-reduction

● HOW TO EXPLOIT

--trace-turbo-reduction

● HOW TO EXPLOIT

--trace-turbo-reduction

● HOW TO EXPLOIT

Graph after EffectLinearization phase

● HOW TO EXPLOIT

Graph after LateOptimization phase

● HOW TO EXPLOIT

Typer hardening bypass?

● HOW TO EXPLOIT

Typer hardening bypass?

● HOW TO EXPLOIT

● HOW TO FIX

PATCH

● HOW TO FIX

IA32 Instruction Selector

● HOW TO FIX

IA32 Instruction Selector

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

AssembleCodePhase

● HOW TO FIX

● HOW TO FIX

Variant analysis

● HOW TO FIX

Variant analysis

● HOW TO FIX

Variant analysis

● HOW TO FIX

Variant analysis (Instruction Selector)

● HOW TO FIX

Variant analysis (Instruction Selector)

● HOW TO FIX

Variant analysis (Code Generator)

● HOW TO FIX

Variant analysis (Code Generator)

● HOW TO FIX

Variant analysis (POC)

● HOW TO FIX

Issue 1305573 (collided with 1304658)

● HOW TO FIX

credit to P4nda0223

Issue 1305573 (collided with 1304658)

● HOW TO FIX

credit to P4nda0223

Takeaways

● Takeaways

